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We develop an approximation for the probability of optically resolving two

fluorescent labels on the backbone of a DNA molecule confined in a nanochannel in

the Odijk regime as a function of the fluorescence wavelength, channel size, and the

properties of the DNA (persistence length and effective width). The theoretical

predictions agree well with equivalent data produced by Monte Carlo simulations of

a touching wormlike bead model of DNA in a high ionic strength buffer. Although

the theory is only strictly valid in the limit where the effective width of the

nanochannel is small compared with the persistence length of the DNA, simulations

indicate that the theoretical predictions are reasonably accurate for channel widths

up to two-thirds of the persistence length. Our results quantify the conjecture that

DNA barcoding has kilobase pair resolution—provided the nanochannel lies in the

Odijk regime. VC 2012 American Institute of Physics. [doi:10.1063/1.3672691]

I. INTRODUCTION

DNA barcoding is emerging as a key tool for high-throughput, single-molecule analysis of

the genome at the kilobase pair level, representing an important complement to DNA sequenc-

ing.1 As illustrated in Fig. 1(a), specific sequences (the DNA barcodes) are fluorescently labeled

by either binding the probes to the chain2–5 or inserting labeled nucleotides via nick exten-

sion.6,7 The backbone is fluorescently labeled with a second color through an intercalating dye

such as YOYO-1. To determine the genomic distance between barcode markers, the DNA needs

to be stretched from its equilibrium, coiled conformation. Several competing technologies have

arisen to accomplish this task: using a receding contact line and subsequent binding to the sur-

face (molecular combing),8–10 extensional flow (direct linear analysis),11–13 and nanochannel

confinement.5–7,14,15 The genomic distance between neighboring barcodes is then determined by

first locating the centers of the sequence-specific labels and then integrating the total backbone

fluorescence intensity between these two locations. Nanochannels provide a particularly attrac-

tive approach to make such measurements since a confined chain fluctuates about its equilib-

rium extension; making multiple, statistically independent measurements of the distance reduces

the sampling error.5,16

A fundamental question related to DNA barcoding in nanochannels is the ability to resolve

two nearby barcodes on the DNA backbone. If we consider a sequence-specific probe that emits

light with wavelength k¼ 573 nm (Ref. 14) and a completely extended DNA molecule with a

rise of 0.34 nm per base pair (bp), then two probes would have to be separated by at least

843 bp if we take k/2 as an estimate of the resolution limit for diffraction limited optics. How-

ever, as we can see from simulation data in Fig. 1(b), the semi-flexible nature of the DNA leads

to incomplete stretching, even in very small channels lying in the Odijk regime.21 In this paper,
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we develop an approximation for the probability of resolving two nearby barcodes as a function

of the nanochannel size and the properties of the DNA (persistence length and effective width),

which themselves depend intimately on the ionic strength of the buffer.18,22–24 Our results apply

to the Odijk regime, which is the most desirable regime for DNA barcoding.6,15

II. THEORY

The equilibrium two-point distribution function WijðrijÞ quantifies the probability density

for segment i and j, corresponding to a genomic distance jj� ij, being separated by a linear dis-

tance rij ¼ j~ri �~rjj in the focal plane of the image. In our theoretical analysis, we envision the

“segments” to be base pairs of the chain, whereupon the contour length per segment is given

by the rise of DNA, r. In our simulations, we will consider a slightly coarser model where the

characteristic length scale is the effective width of the chain, w. Owing to the symmetry of

the square channel, we only need to assume that focal plane is parallel to one of the walls of

the channel but we do not need to specify which wall.25 While Wij is known for a confined

Gaussian chain,26 there are no results for more complicated cases,27 such as the wormlike chain

in a good solvent we need here. However, we do not need to compute this distribution function

to determine the probability of resolving two barcodes. Rather, we can define the probability

wðjjiÞ ¼
ð1

k=2

WijðrijÞdrij (1)

that, given a barcode marker at some point i along the chain, we are able to resolve a second

marker at some different point j. The average probability of resolving a pair of barcode markers

on a chain of N base pairs separated by n¼ jj� ij base pairs is then

pðnÞ ¼ 1

N � n

XN�n

i¼1

wðiþ njiÞ: (2)

We are interested in computing p(n) for the Odijk regime,21 which applies to nanochannel

widths much smaller than the chain persistence length, lp. The width of the channel accessible

to the centerline of the DNA backbone is Deff¼D�w in the limiting case of steric interactions

only, where w is the effective width of the DNA.18 While the inequality Deff � lp may appear

to be so restrictive as to exclude all reasonable nanochannel sizes that allow easy insertion of

FIG. 1. (a) Principle of DNA barcoding. If the linear distance in the focal plane between barcodes does not exceed the dif-

fraction limit, k/2, for light of wavelength k, then the two fluorophores cannot be resolved. (b) Illustration of the chain

extension in different regimes of confinement. The configurations were generated using the simulation method in Sec. III

with a chain with an approximate size of 27.7 kilobase pair (kbp). Only part of the chain is shown in the figure. The persist-

ence length is lp¼ 53 nm (Ref. 17) and the effective width18 is w¼ 4.6 nm, appropriate for TBE 5x buffer.19,20 The two

blue spheres in each snapshot are shown to illustrate barcodes with one of the barcodes located at the end of the chain and

the other barcode at 2 kbp.
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DNA,28 we will see that our final result is a reasonable approximation out to Deff ffi lp. In the

Odijk regime, a chain of total length L consists of a series of deflection segments with the

mean span

hRki ¼ L 1� 2a Deff=lp

� �2=3
h i

; (3)

where a¼ 0.09137 6 0.00007.25 The variance of the extension in this regime is

hR2
ki � hRki

2 ¼ 2bLD2
eff l
�1
p ; (4)

where b¼ 0.00478 6 0.00010.25

We can construct an approximate model for p(n) in the Odijk regime through the following

ansatz. We assume the chain is long compared with the distance n between barcodes and that

the barcodes are not located too close to the end of the chain, whereupon Wij � Wn and

w(iþ nji)� p(n). If we further neglect the contribution of lateral fluctuations between the two

barcode points, WijðrijÞ � WnðxÞ, where x is the distance down the channel axis and Wn(x) is

interpreted as the distribution function for the distance in the x-direction between segments on

the chain separated by a genomic length n. Equation (1) then reduces to

pðnÞ �
ð1

k=2

WnðxÞdx: (5)

In a high ionic strength buffer, the diffraction limit is long compared with the size of a deflec-

tion segment. Neglecting prefactors of order unity, but retaining the definition of the diffraction

limit, this corresponds to21

k=2� D
2=3
eff l1=3

p : (6)

Provided we satisfy Eq. (6), then the integral in Eq. (5) always involves many deflection seg-

ments. It is thus reasonable to assume that the average distance, �x, and variance, r2, between

the two barcodes separated by a contour length L¼ rji� jj > k/2, where r is the rise of double

stranded DNA, are given by Eqs. (3) and (4), respectively. If we further assume a normal distri-

bution for the distance between these barcodes,

WnðxÞ ¼
1ffiffiffiffiffiffiffiffiffiffi

2pr2
p exp � x� �xð Þ2

2r2

" #
; (7)

then Eq. (5) leads to

pðnÞ ¼ 1

2
erfc

k� 2�x

23=2r

� �
; (8)

where erfcðxÞ ¼ ð2=p1=2Þ
Ð1

x expð�t2Þdt is the complementary error function. Equation (8) is

the key result of our analysis.

III. SIMULATION METHOD

The logic leading to Eq. (8) involves a number of assumptions. We tested these assumptions by

using Monte Carlo simulations to directly compute p(n) from Eq. (2) in square nanochannels of

width D. The “touching bead” simulation model29 we used here, illustrated in Fig. 2, is a modifica-

tion of the model we used previously20 to study the different regimes of confined DNA. The chain

consists of N¼ 2048 beads of size w¼ 4.6 nm. All beads interact by a hardcore excluded volume
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with one another and with the walls, whereupon we identify w as both the coarse-graining size (in

the direction along the backbone) and the effective width of the DNA chain (in the direction perpen-

dicular to the backbone). The value of 4.6 nm is the Stigter effective width18,30 for DNA in TBE 5x

buffer.19,20 To provide a connection with experiments, we will ultimately convert the simulation

data (in terms of the beads) into the experimentally relevant genomic distances using the conversion

factor w/r. We take r¼ 0.34 nm/bp as the rise of DNA. Since intercalating dyes can introduce an

increase in the rise of DNA,31 this conversion should be considered approximate and our results for

the resolution limit are likely conservative estimates. Neighboring beads also experience a bending

potential given by the discretized wormlike chain model32

Ubend � kBT lp=w
� �XN�2

k¼1

1�~uk �~ukþ1ð Þ; (9)

where lp¼ 53 nm is the persistence length17 and ~uj ¼ ð~rjþ1 �~rjÞ=l, j [ [1, N� 1] is the unit vec-

tor between beads j and jþ 1.

Chain configurations were generated using reptation and crankshaft moves in the Metropo-

lis scheme. Simulations for each channel size were performed in 12 replicates. The simulations

for a channel of size D were initialized using a configuration generated from preceding simula-

tions of a slightly smaller channel to guarantee acceptance of the initial configuration. Upon

increasing the channel size, we first waited for the mean extension to stabilize around the aver-

age value in the larger channel, and then added an additional 2.048� 107 equilibration steps

before starting the production run. This approach introduces a slight bias against hairpin config-

urations, which are difficult to form in the smallest channels. However, the long equilibration

time and the small change in channel width between simulations minimizes this bias.

To determine an appropriate sampling time for computing the chain statistics, we calcu-

lated the auto-covariance of the extension,33

CRk ðnÞ ¼
hRkðmÞRkðmþ nÞim � hRki

2

hR2
ki � hRki

2
: (10)

Figure 3 shows the decay of the auto-covariance with the number of Monte Carlo steps. On av-

erage, the auto-covariance is sufficiently attenuated after approximately 2.048� 108 trial moves.

In what follows, we used sampling rates of 4.096� 108 trial moves for the 10 nm and 20 nm

channels and 2.048� 108 trial moves for the 30 nm and 40 nm channels, which produces 10

statistically independent configurations per replicate.

In our prior work,20 we used a bead-rod model with a Weeks-Chandler Anderson (WCA)

potential34 to provide bead-bead excluded volume. With our code for this model, we were able

to reach a long chain (2048 beads, 9.42 lm contour length, 27.7 kbp) without sacrificing the

spatial resolution. In free solution, this model produces a root-mean-square end-to-end distance

FIG. 2. Schematic illustration of the touching bead model. The “segments” of the chain, numbered from k¼ 1 to k¼N, are

spherical beads of size w that experience hardcore bead-bead and bead-wall interactions. The bending energy is computed

from the discrete wormlike chain model in Eq. (9) using the vectors ~u pointing between bead centers. For calculations of

p(n), we compute the distance x between each pair (i,j) in the direction of the channel axis.
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of 1.06 lm, a root-mean-square radius of gyration of 0.43 lm, and a mean span dimension of

0.88 lm. All of these values agree well with our prior simulations,20 which themselves match

experimental results. Likewise, the results for the fractional extension of this chain exhibit the

same scaling laws as simulations of our prior model.20

IV. RESULTS AND DISCUSSION

In Eq. (7), we assumed that the distance between barcodes is normally distributed, with the

mean and variance given by those for the mean span of a chain in the Odijk regime.21,25 In Fig. 4,

we compare this assumption to the simulation data for two barcodes separated by 1001 base

pairs. Using a rise of 0.34 nm/bp and a persistence length of 53 nm, these data correspond to

barcodes separated by 6.4 persistence lengths. The normal distribution appears to be an excel-

lent model for the simulation data in Fig. 4. Nevertheless, there is reason to be cautious about

assuming a normal distribution in Eq. (7), since it permits unphysical stretching of the chain.

FIG. 3. Auto-covariance of the chain extension as a function of the number of Monte Carlo steps normalized with the size

of the chain. Symbols are averaged results over the 12 independent runs.

FIG. 4. Comparison between Monte Carlo simulation data for the probability distribution Wn and the assumed form in Eq.

(7) for two barcodes separated by n¼ 1001 base pairs for k¼ 573 nm, lp¼ 53 nm, and w¼ 4.6 nm. The different curves cor-

respond to Eq. (7) for channel sizes D between 10 and 40 nm, and the symbols are the values of the binned data.
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Explicitly, the normal distribution is supported over x [ (�1,þ1), so there is a finite proba-

bility that two barcodes separated by a contour length l will be separated by a linear distance

x> l. For n¼ 1001 bp, the maximum distance between barcodes is approximately 340 nm. For-

tunately, for all of the cases plotted in Fig. 4, the relatively small variance in the chain exten-

sion given by Eq. (4) leads to the normal distribution being strongly attenuated near x¼ l. As a

result, Wij(x> l) makes a negligible contribution to the integral in Eq. (5). The normal distribu-

tion also permits a nonsensical probability that x< 0. Since the probability distribution decays

quickly enough at the upper bound x¼ l and the mean of the distribution is closer to x¼ l than

x¼ 0, then the probability distribution is exponentially small at the other physical limit, x¼ 0.

While the data in Fig. 4 give us confidence in the validity of using a normal distribution, we

will return to this issue after evaluating the corresponding theoretical predictions for p(n).

We thus turn our attention to the second key assumption of our theory, namely, that the

distance between barcodes on the interior of the chain obeys the statistics for a long chain in

the Odijk regime. Naturally, this can only be the case if the chain as a whole, which contains a

large number of deflection segments, also obeys the statistics for the Odijk regime. As we can

see in Fig. 5, the prediction of Eq. (3), which contains no adjustable parameters,25 is an excel-

lent fit for our smallest channel. As the effective channel size increases, there is a systematic

deviation between the predictions for the Odijk regime and the simulation data. The origin of

the deviation is apparent in Fig. 1(b), where the chain is beginning to form hairpins.19 How-

ever, the deviation from the theoretical prediction is quite small, ranging from 0.1% to 3.2%

over the range D¼ 10 nm to D¼ 40 nm.

Figure 6 compares the predictions of Eq. (8) to our simulation data. Since we already con-

firmed in Fig. 4 that the probability distribution p(n) is reasonably Gaussian for all of these

channel sizes, we can conclude that the deviation between the theory and simulation in Fig. 6

is due to a gradual breakdown in the Odijk regime (Fig. 5) as the chain begins to form hairpins

(Fig. 1). Indeed, the agreement between the theoretical prediction and the simulation data for

p(n) in Fig. 6 mirrors the phenomenon we observed in Fig. 5. Nevertheless, the approximate

theoretical result given by Eq. (8) appears to be a quite good description for all of these chan-

nels. Although the numerical results for the mean span and its variations in Eqs. (3) and (4) are

only valid in the limit Deff � lp, it seems that they provide a reasonable approximation for the

configuration of an internal segment of the chain up to Deff � 2lp/3.

We also investigated the effect of relaxing the assumption of a normal distribution in

Eq. (7) by considering other “Gaussian-like” distributions. A natural alternative is the inverse

Gaussian distribution (also called the Wald distribution).35 In the large L limit, the inverse

FIG. 5. Comparison between the extension of the chain and the predictions from the Odijk regime with no adjustable pa-

rameters given by Eq. (3). The simulations correspond to 2048 touching wormlike beads with lp¼ 53 nm and w¼ 4.6 nm.

The channel width accessible to the chain is Deff¼D�w. The error bars correspond to the standard deviation over the 12

independent replicas.
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Gaussian distribution limits to the normal distribution, making it an appropriate choice for prox-

imate barcodes separated by a handful of deflection segments. We also considered distributions

that would remove the unphysical features of the normal distribution. The log-normal distribu-

tion is supported on x [ (0, 1), removing the possibility for a “negative” extension, and the

raised cosine distribution has a finite support, which further removes the possibility of overex-

tension. As we can see in Fig. 7, the results for the resolution limit in a 40 nm channel, which

has the broadest distribution for Wn, are effectively unchanged by the choice of any of these

“Gaussian-like” probability distributions. The results in Fig. 7 support our choice of the normal

distribution to describe the probability distribution even though its limits are not physical; the

normal distribution gives essentially the same results for p(n) as a more realistic model, such as

the raised cosine distribution, while permitting the simple expression for p(n) given by Eq. (8).

All of our simulation data and discussion thus far focused on the configurations of confined

DNA in a high ionic strength buffer, where DNA-DNA and DNA-wall electrostatic interactions

FIG. 6. Comparison between Monte Carlo simulation data for the probability of resolving two barcodes separated by a

genomic distance n, p(n), and the prediction from Eq. (8) for k¼ 573 nm, lp¼ 53 nm and w¼ 4.6 nm. The different curves

correspond to Eq. (8) for channel sizes D between 10 and 40 nm, and the symbols are the values of the simulation data.

FIG. 7. Comparison of the predictions for p(n) in the 40 nm channel corresponding to different probability distributions for

Wn(x), using the statistics for a chain in the Odijk regime given by Eqs. (3) and (4). The various curves correspond to the

normal distribution for Rk (black, solid), a raised cosine distribution for Rk (blue, dots), a log-normal distribution for L�Rk
(red, dashed) and an inverse Gaussian distribution for L�Rk (green, solid).
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are screened. In this case, the inequality given by Eq. (6) holds and the diffraction limit corre-

sponds to many deflection segments. As the ionic strength of the solution is decreased, the elec-

trostatic interactions become sensible and lead to an increase in both the persistence length of

the DNA22–24 and the effective width.18 Schwartz and coworkers6,15 have advocated the use of

low ionic strength buffers to permit DNA barcoding in relatively wide nanochannels (nanoslits).

By increasing the persistence length, these nanochannels still satisfy the criteria for the Odijk

regime, Deff � lp, especially when we recall that Deff¼D�w and the effective width w also

increases as the ionic strength decreases. We can make a crude estimate for the bounds of our

theory by assuming that these systems operate in a regime Deff� lp, corresponding to the edge

of the Odijk regime in Fig. 5. In such circumstances, our theory would only be valid for

k=2� lp, corresponding to ionic strengths down to around 0.1–1 mM.36 This value is similar to

the most recent low ionic strength experiments aimed towards DNA barcoding,15 so our results

represent a conservative estimate for the maximum barcode density for these experiments.

However, we should use caution in applying the results for square nanochannels to nanoslits.37

V. CONCLUDING REMARKS

In the present contribution, we have developed an approximation for the probability of

resolving two nearby barcodes on a DNA molecule confined in a nanochannel as a function of

the channel size, the wavelength of the fluorescence, and the properties of the DNA (persistence

length and effective width). Although the final result in Eq. (8) required assuming that (i) the

linear distance between barcodes is normally distributed and (ii) that the statistics for these

short, internal sections of the chain are equivalent to an infinitely long chain, we found that the

theory leads to a reasonable description of the simulation data. While we chose to use a normal

distribution for algebraic simplicity, the results for the probability of resolving two barcodes are

essentially unchanged when we use more realistic probability distributions (and the concomi-

tantly more difficult algebra.) Our results provide a theoretical basis for claims that the resolu-

tion of DNA barcoding in nanochannels is around 1 kbp.16,38

Our conclusions are based exclusively on the equilibrium chain statistics. Such an analysis

tacitly assumes that we can actually measure the instantaneous chain configuration or, in the

case of barcoding, the instantaneous location of the two barcodes. While the fluorophores used

for DNA barcodes are bright enough to image before they photobleach, the rate of photon emis-

sion relative to the fluctuations in the chain extension is probably low. As a result, the photons

need to be collected over a period of time to increase the signal-to-noise ratio to an acceptable

level. The imaged fluorophore “position” is then a smeared value of the instantaneous positions

corresponding to each photon emission. Our results likely correspond to a theoretical lower

bound on the minimum distance between fluorophores.

While we had success in determining the resolution limits in the Odijk regime, we have

less confidence that this approach can be extended easily into other regimes of confine-

ment.20,37,39,40 As the channel size increases, the size of the statistical segment increases as

well. For example, in the so-called “extended de Gennes” regime,20 which is more representa-

tive of the confinement regime in recent DNA barcoding experiments,5,7 the chain consists of

anisometric compression blobs with a characteristic size H ffi ðDeff lpÞ2=3w�1=3.39 For a 250 nm

nanochannel with lp¼ 53 nm and w¼ 4.6 nm, the blob size (neglecting prefactors of order unity)

is commensurate with the diffraction limit and it is no longer appropriate to adopt a resolution

model that requires an assumption similar to Eq. (6). While we can certainly compute the prob-

ability of resolving two nearby barcodes using Monte Carlo simulations of the type employed

here, developing the corresponding theoretical model remains challenging.
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